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Existence and Error Estimates for Solutions of a 
Discrete Analog of Nonlinear Eigenvalue Problems 

By R. B. Simpson* 

Abstract. Finite-difference methods using the five-point discrete Laplacian and suit- 
able boundary modifications for approximating (1) - Au = Xf(x, u) in a plane domain 
D, u = 0 on its boundary are considered. It is shown that if (1) has an isolated solution, u, 
then the discrete problem has a solution, Uh, for which Uh - u = 0(h2). If the discrete 
problem has solutions, U,,, such that I Uh I < M as h tends to zero, then (1) has a solution, u, 
satisfying Jul < M. Let X* be a critical value of X so that (1) has positive solutions for 
X < X* but not for X > X*, then the discrete problem has an analogous critical value X*? 
and, under suitable conditions, X* -* = 0(h 4/3-), e > 0. Computed results for the case 
j(x, u) = eu and D the unit square are given. 

Introduction. For some nonlinear elliptic boundary-value problems, the exist- 
ence and number of solutions depends strongly on the values of parameters in the 
problem. In this paper, we present some affirmative answers to the question of whether 
discrete versions of the problems have the same number of solutions for fixed param- 
eter values; and we establish some asymptotic error estimates for these cases. The 
problems to be considered are perhaps the simplest ones in which this phenomenon 
appears nontrivially, the problems of finding solutions, u(x; X), to the mildly nonlinear 
problem for a bounded domain D of the plane 

(0.1) -A u(x) = Xf(X, u(X)), x C D, 

(0.2) u(x) = 0, x E AD. 

In particular, we are interested in nonlinearities, f(x, u), of the type occurring in 
certain nonlinear steady-state diffusion problems. For these problems, positive solu- 
tions of (0.1), (0.2) are desired and, typically, these exist for certain ranges of X, 0 < 
X < X*, where X* and the multiplicity of positive solutions are difficult to predict 
directly from (0.1), (0.2). A variety of physical problems which can be cast in this form 
are discussed in "Nonlinear diffusion induced by nonlinear sources" by Joseph and 
Sparrow [10], along with some analytical techniques for estimating X"* and for ap- 
proximately solving (0.1), (0.2). More extensive bibliographies of literature pertaining 
to (0.1), (0.2) may be found in [17] and [18]. 

The dependence of solutions, u(x; X), of (0.1), (0.2) on X can be summarized by 
graphs plotting u(Q; X) versus X for a selected point Q E D; for convenience, in this 
context, u(Q; X) will be contracted to u. If the geometry of the problem permits, one 
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would niaturally choose Q so that u(Q; X) = max., Ju(x; X)j. For inhomogeneous non- 
linearities with f(x, u) convex in u, such as f(x, u) = eu or (1 + (au)2)u + b, the u 
versus X graphs can be expected to resemble the solid line curve in Fig. 1 ([10], [13]) 
with a maximum at (u*, X*). 

ORIGINAL PROBLEM 
|/-- DISCRETE ANALOG 

U -_ 

FIGURE 1 

The solutions corresponding to the branch of this curve for u between 0 and u* are 
'stable' solutions ('stable' in several equivalent senses [6], [13], [18]); however, these 
stability properties vanish when u reaches and exceeds Ol. 

In this paper, we consider a common finite-difference analog of (0.1), (0.2) and our 
results prove that the discrete problem has solutions which, when graphed as in Fig. 
1, have basically the same shape as their continuous counterpart, with a miaximum of 
(u*, X*). We show that the graph of discrete -solutions converges to that of the con- 
tinuotus problem, with rate 0(h2) away from the maximum (or other extrema) and 

possibly somnewhat slower near the inaxima (at least u* - u* = 0(h617) and X* - 
= 0(h4 13-,) for any e > 0). In particular, finite-difference methods appear to be 

a viable approach to calculating X* and z*. 
A brief outline of the paper is as follows. In Section 1, we give details of our re- 

quirenments on (0.1) and (0.2); we formulate the discrete problem and note some es- 
tablislhed properties. In Section 2, we show that if (0.1), (0.2) has a solution (not neces- 
sarily stable or positive), then so does its discrete analog and we develop some error 
estimates for it. We also show that if the discrete problem has solutions with a uniform 
bound for all h stufficiently small, there must be corresponding solutions of (0.1), 

ln Section 3, we conisider the situation graphed in Fig. 1 for positive solutions and 
prov?' ouir assertion about the appearance of the curve of discrete solutions and its 



DISCRETE ANALOG OF NONLINEAR ElIGENVALUE PROBLEMS 361 

convergence to that of the continuous case. In Section 4, we review the results of a 
sample calculation for f(x, u) = e" for the unit square. 

1. The Boundary-Value Problem and Discrete Analog. The problem to be 
considered is posed for a bounded domain, D, of the plane, withl a piecewise smooth 
boundary, (9D, and it seeks a function u(x; X) satisfying (repeated for convenience) 

(0.1) -AU(X; X) X(X, (x; )), X C D, 

(0.2) u(x; X) - 0, x C OD. 

As basic smoothness requirements on this problem, we assume that f(x, u) is 
in C-(D X (- o, c )), and that u(x; A) C C4(D). We are primarily interested in non- 
linearities in which f(x, u) is monotone increasing in u, with f(x, 0) _ 0; typically, 
f(x, it) = e' or ui + u3. We shall require of f that 

(1.1) f (x, u) > 0, (x, u) EF D X (-co, O) 

Important problems related to (0.1), (0.2) are the linear eigenvalue problems 

(1.2) - Av(x) - pf,(x, g(x))u(x), x C D, 

(1.3) v(x) =0, x C AD. 

Let 4i(g(x)) be the eigenvalues of (1.2), (1.3), ordered so that I,(g(x)) ? iAj(g(x)) 
for i > 1. 

Definition 1.1. A solution u(x; X) of (0.1), (0.2), such that X z 't,(u(x; A)) for all 
i, is an isolated solution. 

Definition 1.2. A solution u(x; X) of (0.1), (0.2), such that X < ,t1A(i(x; N)), is a 
stable solution. 

In [17], we showed that if (0.1), (0.2) had a positive, stable solution, and a monotone, 
consistent finite-difference analog was considered, then the discrete problem had a 
positive solutioin converging to the positive stable solution. Moreover, if the discretiza- 
tion was strongly stable and was an O(h') scheme for linear problems, the convergence 
to positive stable solutions of this class of nonlinear problems is also O(h'). In the 
second section of this paper, we extend these results, for a particular discretization, 
to hold for any isolated solution of (0.1), (0.2). The particular discretization uses the 
five-point discrete Laplacian, with the Shortley-Weller modification at mesh points 
near the boundary. Conlsider a uniform square mesh of spacing h on the plane and 
let D, be the set of mesh points lying in D. For a mesh point P, we shall use PF, P2, 
P3, P4 to denote its four nearest neighbors; we define D* to be the interior mesh points, 
C* to be the mesh points near the boundary, and Ch to be the intersection of the 
mesh lines with dD, i.e., 

(1.4) D* - P I P C D,,, P, X D,,, i = 1, 2, 3, 4!, C* =D, - D*,. 

If W(P) is a function defined on D, U Ch and P e D*, we let 

A,* W(P)- 11= 
2 W(P,)- 4 W(P)) 

If P c C*, let P1 (anid P,), for example, not lie in D*, but let P* (and P*) be the point 
ini C,, lyino betwceen P and P1 (P9). Let P,, P and P* lie on a line, with the distance of 
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Pi to P being ah (0 < a < 1) (and similarly for P4, P2 and P*, the distance P* to P 
being ,Bh (0 < 83 < 1)). Then, we define 

ZAhW(P) = 2h-((a 1+'-W(P3) + (a( + 1))-1W(P*) 
+ (p3 + 1)1 W(P4) + (3(03 + 1))1 W(P*)- (a' + W-?)W(P)). 

For convenience, we assume that if P C C*, then P has at most two mesh neighbors 
which are not in Dh. 

The discrete analog then is to solve (1.5), (1.6) for a mesh function UA(P, X) 
satisfying 

(1.5) -Ah Uh(P, X) = Xf(P, Uh(P, X)), P EDh 

(1.6) UA(P, X) = 0, P ? Ch. 

Discrete analogs of (1.1), (1.2) are the eigenvalue problems 

(1.7) -h Vh(P) = /hf?(P5 g(P)) Vh(P), PC Dh, 

(1.8) Vh(P) = 0, P ch. 

We shall use j, h,(g) for the eigenvalues of (1.6), (1.7). When f (x, g(x)) is a smooth 
positive function, a minor extension of the arguments of [14] show that for each i 

(1.9) lpi,h(g) - pi(g)j = 0(h 2). 

In a paper on error estimates for operators A, + XI, Bramble established the a 
priori inequality (1.10) for the case fj,- 1 ((5.6) in [4]). 

max I Vh(P)j < C(min jX - Ai7,h(U(X; X)) 
PEDhUCh i 

(1.10) *max l(Ah + Xfu(P, u(P; X)))Vh(P)l 
PE -Dh* 

+ h2 max (Ah + Xf,(P, u)) VA(P)j + max I Vh(P)I}. 
PECh* P C Aj 

The extension of Bramble's result from f - I to f satisfying (1.1) is straightforward, 
using (1.9); so we shall assume both (1.9) and (1.10) in the sequel. Restriction (1.1) 
on f(x, u) is only used to support our use of (1.9) and (1.10); our results extend to any 
cases for which these hold. 

2. Approximation of Isolated Solutions. In this section, we show that if, for 
some X value, (0.1) and (0.2) have an isolated solution, then so does its discrete analog 
for h sufficiently small, and error estimates are given. Moreover, if, for some X value, 
(0.1) and (0.2) do not have a solution, u(x, X), satisfying ju(x, X)j < M, then neither 
does the discrete problem for h sufficiently small. 

THEOREM 2.1. Let u(x, X) be an isolated** solution of (0. 1), (0.2) in C4(D); then, for 
h sufficiently snmall, (1.5) and (1.6) have a solution, Uh(P, X), for which 

(2.1) max !UhA(P, X) - u(P; X)1 = 0(h2). 
P e D) h 

** Definition 1.1. 
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Proof. We shall combine the analysis in [12] of the modified Newton (or chord) 
method for systems of equations with the a priori estimate (1.10) to establish the re- 
sult. (See also [20], for modified Newton's method.) Let MF denote the vector space 
of functions defined on Dh U Ch with the norm IIW(P)II = maxp, ,,,,, IW(P)I. On 
this vector space, we define a function, T, by prescribing that it map mesh function 
W(P) into 

(2.2) T( W)(P) = 'Ah W(P) + Xf(P, Wh(P)), P ED,, 

T(W)(P) = W(P), PE CA. 

For T so defined, a solution of the discrete problem (1.5), (1.6) is a zero of T and vice 
versa. Let us denote by T'(W), the Frechet derivative of T formed at W in MF. It is 
straightforward to verify that T'(W), operating on V in MF, gives 

(2.3) T'(W) V(P) = A,, V(P) + - f- f(P, W(P)) V(P), P E Dh, 

T'(W) V(P)== V(P), P E Ch. 

The modified Newton method for determining zeros of T consists of choosing an 
initial guess, Uh'(P), at the solution of (1.5), (1.6) such that 

(2.4) I' = T'( U,0 Y 

exists and forming the sequence of iterates U,($L(P) by 

(2.5) uLnJ (P) = U('n'(P) - rT(Lj,?' (P)), n = 1, 2, 3, 

The success of this method is assured under the following conditions, taken from [12], 
and in which we use "II K, I" to denote the induced matrix norm. Let 

(2.6) IrF(T'( U,"')- T'(W)) II , K IH U,?' - WI 

for all W satisfying II U,0- - WI I < r, 

and let r7 be defined by 

(2.7) = HF(T(U())j1. 

The conditions are 
(i) r = T'(Uh01))1 must exist, 

(ii) Kr < 1/4, 
(iii) X < (I - Kr)r, 

and when they are met, we can concluide that T has a zero, Uh(P, N), satisfying 

(2.8) | Uh(P, X) - Uh 0(P, X)I I < (1 - (1 - 4 K-)')/2 K. 

Let u(x; A) be an isolated solution of (0.1), (0.2); we shall verify that, 
for h sufficiently small, we can use i(x; N) restricted to Dh U Ch as a successful initial 
guess, U,?)(P). Since uj,,(u(x; N)) converges to ,I,(u(x; X)), (1.9), as h tends to zero, 
the assumption that ii(x; X) is isolated implies that, for any i, X # u j,,(u(x; N)), for h 
sufficiently small. Consequently, the only solution of 

(2.9) T'(u(x; N)) V(P) = 0, P E D,, U C,,, 

is V(P) = 0, and 
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(2.10) r = T'(u(x; X)) 1 cxists. 

Moreover, there is an ho, for which mini (I X - i h(U(X, X))K-) is bounded uniformly 

for h < h0, and (1.10) can be interpreted as showing that, for some constant C, 

(2.11) IIFIIM < C for h < h,. 

Let 

(2.12) L(r) = max IfJ,,t(x, W(x))I, 

the maximum taken as x varies over D and I (x) - u(x; X)j < r for each x. From 
(2.3), it can be seen that for a mesh function Vh(P), T^(u) - Th(Vh) is represented by a 
diagonal matrix 

(2.13) TK,(u)- T,,( Vh) = diag[f,(P, u(x; X)) - fu(P, Vh(P))] 

and so 

|F(Th(11) - Th Vh))i ? IIf I- I F I 1r|| L(r) u u Vh I I, if I Iu - Vh II r. 

Looking at (2.11) and (2.13), we see that here we can set 

(2.14) K = lHI FJ L(r) ? CL(r) 

andc now turn to determining 7. 
In this case, from (2.2), 

T( Uhl )(P) = ,uII(P; X) + f(P, u (P; )) P E Dh, 

(2.15) = 0, P & Ch, 

= (As, - u)U(P; X), P E Dh, 

and setting V,(P) = FTh(U0,'))(P) in (1.10), we have, for a constant C uniform in h, 

H=lFTj(UL ')Hj < C{max J(A, - A)u(P; X)j 
(2. 16), :)h 

+ h2 max |(Ah - A)u(P; X)IJ 
P CE C h * 

However, it is well known [3] that if tl(x; X) C C4(D), then the first maximum 
in face brackets in (2.16) is 0(h') and the secbnd is 0(1) for small h. Hence, for X in 
(2.7), we have 

(2.17) 7 < Mh 

We can now check that conditions (i), (ii), and (iii), following (2.7), are satisfied 
for h suLfficienitly small and reach the conclusion stated in the theorem. That (i) is 
satisfied is stated at (2.10); since L(r) is nondecreasing with r, we can choose r small 
enough to ensure that 

(2.18) Kr = CL(r)r < 1/4 

satisfying (ii). With such an r, we chose ho small enough that our earlier requirements 
on this symbol are met and 

(2.19) Mh,, < (1 - Kr)r. 



DISCRETE ANALOG OF NONLINEAR EIGENVALUE PROBLEMS 365 

Then, evidently (iii) will be satisfied for all h < ho, and the existence of a zero Uh(P, X) 
of T(U) is proven. Moreover, from the estimate (2.8) which the modified Newton 
method affords 

(2.20) U Uh(P, X) - u(P, X)I (I - (I - 4KMh2)I'2)/2K 

= 0(h 2). 

Hence, the conclusions of the theorem are established. 
The use of the analysis of the modified Newton method made in the preceding 

proof suggests an analogy to the Lax stability convergence equivalence theorem for 
evolutionary problems. The existence of an isolated solution of the original problem 
may be compared to the well-posedness requirement of the Lax theorem. Condition 
(i), following (2.7), and the establishment at (2.11), that II II,, is bounded uniformly 
in h, is a statement of stability for the (linearized) difference scheme. Looking at (2.7), 
one can see that a requirement, that -o tend to zero as h approaches zero, is in effect a 
consistency requirement on the difference scheme. With these analogies, then, the 
technique of the proof can be regarded as establishing that for a well-posed problem 
and a consistent scheme, stability implies convergence (and implies, less trivially here 
than in the linear case, existence itself). 

In the preceding theorem, we considered a fixed X; however, in Section 3, we shall 
allow X(h) to vary with h in such a manner that 

(2.21) \(h) - pA(u(x; X(h)))j > 0(hl-') 

for some fixed i and - 1 > e > 0. If we assume that 

(1.9) /h,i(U(X; X)) - bz(u(x; X)) = O(h2) 

holds uniformly in X, as X varies at least over the range of X(h), then the technique of 
the preceding proof can be used to establish 

COROLLARY. Let u(x; X(h)) be a family of isolated solutions of (0.1), (0.2) depending 
on h through X(h), and let (2.21) hold. Then, for h sufficiently small, the discrete problem 
(1.5) and (1.6) has a family of solutions Uh(P, X(h)) for which 

(2.22) max I Uh(P, X(h)) - u(P; X(h))I = 0(h1- f). 
PEIDh 

Having shown that there are solutions of the discrete problem converging to each 
isolated solution of the continuous problem, we now observe that the discrete problem 
has no additional spurious solutions in the sense of the following theorem. 

THEOREM 2.2. Let hi be a sequence of mesh sizes converging to zero. Let U,h(P, X) 
be a sequence of solutions of (I.5), (1.6) for fixed X, with 

(2.23) max I Uhi(P, X)I < M 
PEEDh 

for some constant M. There are extensions lli(x) of Uhi(P) to D stuch that ti1(x) is com- 
pact in L2(D) and any subsequential limit point, U(x, X), is a solution of (0.1), (0.2) for 
which I(x, X)1 I M. 

Proof. Let us pick a circle, K, with D in its interior. The extension, ui(x), of 
U, (P) to K is obtained by linearly interpolating Uh (P) for P C D, and zero at mesh 
points in K, but not in Dh. Interpolations which accomplish this, for which 
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(2.24) IKKX) + C -u (X), dx < Ch2 { (1 Uh(P)) + (62 U(p)) 

are described in [2] or [5]. (Here 61, 62 are first forward divided differences in the 
x1 and x2 direction.) 

In [17, Lemma 3], it is shown that the sum on the right side of (2.24) satisfies 

h2 E (SI Uh)2 + (a2 Uht)2 ? (16/15) E Uhi(P)(- AhUhi(P)) 

(2.25) C 

= (16/115)h2i E XUhi(P)f(P, Uhi(P)). 
PEDh 

However, since it has been assumed that jUh (P)l < M, the right side of (2.25) is 
uniformly bounded in hi. Consequently, ui(x) is a bounded sequence in H?(D) and 
is compact in L2(D) [1]. Let ui(x) now denote an L2 convergent subsequence of the 
compact sequence; we wish to show that the L2-limit, ui(x), of ui(x) is a solution of 
(0.1), (0.2). It would seem natural to approach this by first defining a sequence of func- 
tions yi(x) by 

(2.26) -Ayi(x) = XJ(x, i7(x)), x C D, 
- i (x) O, X E C, 

and then showing that -yi(x)I and ' ui(x)} had the same L2-limit by investigating 

(2.27) ZAh)'(P) - AhUI(P) = (Ah -)'y(P) 

The author was unable to determine that the ui(x) had enough smoothness (uniformly 
in hi) to ensure that (2.27) tends to zero as hi tends to zero. Consequently, a somewhat 
more involved argument seems necessary. We introduce Wi(P) by 

(2.28) ,A, W(P) = Xf(P, u (P)), P E D*: 

W(P) 0, P X D*. 

Let wi(x) be the extension of Wi(P) to D as piecewise constant over squares of length 
h centered on the mesh points. Let G(x; t) be the Green's function for the linear version 
of (0.1), (0.2); we will show that W7(x) converges in Lo to a function, w(x), satisfying 

(2.29) w(x) = X f G(x; $)J( , ii(t)) dS. 

Then, the proof will be completed by showing that iv1(x) and ui(x) have the same L2- 
limit. 

Let f(x, ui(x)) be the piecewise constant extension of f(P, u2(P)) for P E D* and 
zero for P C C* to D. 

LEMMA 2.3. f(x, ui(x)) converges in L2(D) to f(x, u(x)). 
Proof. This can be established by writing 

(2.30) f(x, ui(x)) - f(x, au(x)) = f(x, ui(x)) - f(x, ui(x)) + f(x, ui(x)) - f(x, a(x)) 

and tackling the terms oIn the right of (2.30) separately. In the square centered on 
P C D*, we have, from the mean valtue theorem, 

See (1.4) for D*. 
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(2.31) f(x, u(x)) -f(x,(x)) = { -Pf(n 6)+ (t' ) (i) (x- 1) AX, u i W) -?:?(X,&x0 0)+ , 1)9U 
7) X i 

However, since ui(x) is a linear interpolate, either auil/xi vanishes, or it is a first 
difference of Uj(P). Since I 01 < M, one obtains, from integrating over the square and 
estimating, 

(2.32) f (f - 1)2 dyx ? K(Z 6,ui(P)2 + 62Ui(P)2 + Ih 

If P E C*,, an additional term of 0(h) appears on the right side of (2.31) (i.e., f(P, ii(P)) 
- f(P, 0)) and from these observations it can be seen that f(x, ui(x)) - f(x, ui(x)) 
converges to zero in L2(D). 

From the convergence of ui1(x) to ul(x), the mean value theorem and the uniform 
boundedness of the ui(x), it follows that f(x, ui(x)) converges to f(x, fi(x)) in L2(D), 
completing the proof of the lemma. 

LEMMA 2.4. w (x) converges to w(x) defined by (2.29) in L2(D). 
Let Gh(P; Q) be the discrete Green's function for the problem (2.28) which defines 

Wj(P) and let Gh(x; t) be its piecewise constant extension to D. Recalling w(x) from 
(2.29), we observe that 

w (x) - w(x) = Gh,(X, s)fQ(, Ui4)) - G(x, t)f(, ct4)) di 

(2.33) = f G, (x, t)(f(Q, u(O)) - (s, ))) di 

+ f (G(x, t) - G,h(x, t))J(t, t)) d4. 

However, from estimates for the discrete Green's function, [2], and Lemma 2.3, we 
can conclude that the first integral on the right of (2.32) converges to zero in L2(D). 
Let 

A(x) = f ((x; ) - Gh, (x; t))f (, 2(t)) d . 

In [2], it is proven that Ghi(x; t) converges, as a function of i, weakly in L,(D) to 
G(x; t) as i--> - . Consequently, yi(x) converges pointwise to zero f6r x E D. How- 
ever, If(t)l ? M ensures that y,(x) is bounded uniformly in i and x and, hence, 
y1(x) converges to zero in L2(D). 

The only task left to us is to show that ui(x) and wi(x) have the same L2-limit. 
From (2.28), we see that 

(2.34) Ah(W(P)- U(P)) = 0, P F D*,, 

Wi(P) Ui (P) = 0, P ( Ch. 

Moreover, since Ah Wi(P) is bounded for P E Dh, uniformly in h, standard estimates 
for Gh(P; Q), [3], show that Wj(P) = 0(h) if P is a neighbour of a point in C*. Con- 

sequently, for the Shortley-Weller operator 

(2.35) AhWi(Q) = 0(h-') for Q E C*. 
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Using (2.34) and (2.35) in (1.10) (with X = 0). we see that 

(2.36) max Wi(P) - Ui(P)I = 0(h). 
P (-- , OhJ C, 

However, max.Eb1wj(x) - ui(x) maxPCDUCjI Wi(P) - Ui(P)I, since the extensions 
are piecewise constant and linear. This establishes that wi } and 'ui } have the same 
L2-limit, a(x). By (2.29), then 

a(x) = X ID G(x, t)f( , f(i)) dt 

and standard regularity theorems will establish that ui(x) is a smooth solution. 

3. Error Estimates for Discrete Approximations to u*, X*. We now specialize 
our discussion to consider a branch of positive solutions near an extreme point, X*, 
of the range of X for which positive solutions exist. More precisely, we hypothesize that 

HI. For a range of X, X* - a ? X < X*, there are (at least) two positive solutions, 
ul(x; X) and u2(x; X), such that u,(x; X) < u2(x; X), x & D. 

H2. u,(x; X) (u2(x; X)) is monotone increasing (decreasing) in X for each x E D. 
H3. lim,-* uj(x; X) = u*(x, X*) is a solution of (0.1), (0.2) for X = X*. 
H4. For a range of X, X* < X < X* + 8, there are no positive solutions of (0.1), 

(0.2) such that 

(3.1) max u(x; X) < max u9(x, X - a)- M. 
x I 

H5. ii1(u2(x; X)) < X < X* < A,'(u,(x; X)) for X* - a < X < A*. 
These conditions seem to be present in mathematical models of steady-state con- 

ditions which are stable for a range of X, represented by u,(x; X), but which become 
unstable for X = X*. While conditions on the problem under which these hypotheses 
hold in general are not known, a number of problems in which they hold either in 
part or in full have appeared in the literature. In [13], the minimal positive solution of 
(0.1), (0.2), with a nonlinearity f(x, u) that is convex in u, is shown to satisfy H2, 
H3, H4, H5.' Much less appears to be known of general behavior of u2(x; X); however, 
specific cases are studied in [9], [10], and [11]. 

Let X(u) and Xh(u) denote the functions relating X to u(Q; X) and U,(Q; X), re- 
spectively, as graphed in Fig. 1 (we assume that Q is a mesh point for every h). Then, 
A* is a maximum value for X(u), taken on at u = u*. It is a straightforward observa- 
tion on the material in the preceding section that if HI through H5 hold, then, for h 
sufficiently small, the discrete problem has a critical (maximum) value, X*, which 
is an analog of X*, and, in fact, that 

(3.2) lim X* = X*. 
h-O 

Let (u*, X*) be values for which u* = Uh(Q, X*); we turn to estimating X*- X*I and 
U*- u* 1. We shall assume that the curve for the discrete problem has a unique maxi- 

mum at (u*, X*) (alternatively, our results could refer to some local maximum (u*, X*) 
of the discrete curve). 

THEOREM 3.1. Suppose that X(u), X h(u) are three times continuously differentiable, 

t The claim in [13] that H5 holds for all miniimal positive solutions has been corrected in [151. 
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thait d2X(0*)1du2 < 0, and that (1.8) ho/lds uniforlny for X*- a < X < A* and for 
both tl,(x; X) and 12(X; X). TIie,i 

(3.3) Iu -u*1 = O(hb/) 

and 

(3.4) fXA* -- I*j 0(h4/3 -) 

for any e > 0. 
Proof. The proof proceeds by replacing the graphs of X(u) and X,(u) by quadratic 

approximations obtained by interpolation. Estimates for the positions of the actual 
maxima of these graphs are obtained from the positions of the maxima of the ap- 
proximating quadratics. For it in the interval [u,(Q; X* - a), u2(Q; A* - a)], the 
graph of X(u) is defined and has the appearance of the solid line in Fig. 2 with a 
maximum of X* at u = u* - u*(Q; X*). Let 

(3.5) X, = - ih', i = 1, 2, 3, forO K< mn < 2 (m to be chosen later). 

If we use u(i) to denote u,(Q; XN), then since d X(u*)/du2 < 0, we can conclude that 

(3.6) 0(h/-'2) u(i) - U* X o(hm/2 

and 

(3.7) O(h''2) = u(i) - u(j) X o(hm/2) if i L j. 

Since us1(u,(x; Xi)) > A* (H5) 

(3.8) gju(u(x; Xi)) - Xi $ o(hm) 

and so, using the corollary to Theorem 2.1, the discrete problems (1.5) and (1.6), with 
X = Xi, will have solutions Uh(P; Xi) for which 

(3.9) Uh(P; N) - UJ(P; X;) = O(h 2) P C Dh. 

For brevity, we shall write 

(3.10) Uh(Q; Xi) Ui, 

so that (3.9), for P = Q, could be written 

(3.11). u7(i) - u(i) = O(h2-m). 

Let P(u) and Ph(u) be quadratics in u, interpolating (u(i), Xj) and (fi(i), X,), re- 
spectively, for i 1, 2, 3. Then, we can write, using divided difference forms, 

(3.12) P(u) = a(h)(u- u(1))(u- u(2)) + b(h)(u- u(M)) + u(l), 

Ph(u) - A(h)(u - ui())(u- u(2)) + B(h)(u- u(1)) + u(l), 

where 

(3.13) b(h) = (X2 - X,)/(u(2) - u(1)), B(h) = (X2 - X1)/(a(2)- - (l)), 

and a(h) and A(h) are second divided differences of the interpolation data. Let 

(3.14) ((h) = (u(1) + u(2))1/2 - b(h)/(2a(h)) 

be the position of the maximum of P(u) (or minimum if a(h) > 0) and let 
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(3.15) V(h) = (ui(1) + u(2))/2 - B(h)/(2A(h)) 

be the position of the maximum of Pa(u). That these actually are maxima will follow 
from later arguments. Slight modifications of the same arguments produce estimates 
(3.3) for u* - u* and (3.4) for X* - X*; the basic arguments depend on the lemmas 
stated directly below. The arguments giving the estimates follow the statements of 
the lemmas and the proof of the lemmas follow these. The hypotheses of Theorem 3.1 
are assumed for each lemma. 

LEMMA 3.2. v(h) - u* = O(h 3 4). 

LEMMA 3.3. If m < 4/3, V(h) - v(h) = O(h'-"). 
LEMMA 3.4. If m < 4/3, V(h) - u* = 0(h 3 

). 

Using these, we can see that 

(3.16) u* - =h* - u v(h) + v(h) - V(h) + V(h) u 

= O(h3m/4) + O(h2)- . 

The best result is obtained then when m 8/7, and the result is (3.3). For (3.4), we 
see that 

h = - x1 + 1 - 

(3.17) ? lXh(uh) - Xh(1(1))l + h 

O(Iu* - ji(1)12) ? h 

But by (3.16), (3.6) and (3.11) 

(3.18) U*- u(1) = U*- u + u* - u(1) + u(1) - ui(1) 
= O(h3m/4) + O(h2-m) + 

O(hm/2). 

Hence - *1- 0(h m) + O(h 42-). 

The best result would be obtained by setting m = 4/3; however, Lemmas 3.3 and 
3.4 do not admit this, so (3.4) is obtained by setting m = 4/3 - e for any E > 0. 

Proof of Lemma 3.2. The interpolation error at argument u can be expressed as 

(3.19) X(u) - P(u) = (X 3) ()/3!)(u - u(1))(u - u(2))(u - u(3)) 

for t in the interval determined by u, u(i), i = 1, 2, 3. Since u(i) - u* 0(h=/2), 
(3.19) shows that the graph of P(u) lies in a strip of vertical height 

O((ju - u*I + h ml2)), 

centered on the graph of X(u). Hence, 

(3.20) P(u*) > X.* - O(h3m/2). 

Now, suppose c varies with h in such a manner that O(hXl' ) = 0- # O(h3m/4), 
then X(co) < X* - 0(h3,,/2),tt since d2X(u*)/du2 # 0, for h sufficiently small. So 

(3.21) P(c) ?< X(U) + O(Icw - u* ? + hm/2)3 < X* - O(h3m/2). 

Since P has a unique extremum, it must be a maximum and in view of P(vh) ? P(u*) > 
A- Q(h3m/2) and (3.21), we can conclude that Vh -U* = 0(h3tm4). That X(Vh)- 

A= Q0(h3n/2) follows immediately from d2 X(u*)/du2 # 0. 

tt (X()- X*)/h3n-/2 _ - as hI - 0. 
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Proof of Lemma 3.3. From (3.14) and (3.15), 

(3.22) v(h) - V(h) 

= [(u(I) + u(2)) - (a(l) + a(2)) + B(h)/ A(h) - b(h)/a(h)]/2. 

Observing (3.11), we conclude that 

(3.23) (u(1) + u(2)) - (a(l) + u(2)) = 0(h 

so we consider the remaining difference on the right of (3.22). From (3.7) and (3.11), 
it can be seen that 

(3.24) O(h1m/2) = u(i) - uC) # o(hm/2), i # j. 

So if m < 4/3, 

B(h) = (X2 - X1)/(a(2)- - (1)) 

(3.25) = b(h){(u(2) - u(1))/(a(2)- - 
(l))} 

= b(h){1 + (u(2) - u(2) + ui() - u(l))/(u(2)- - (I 

= b(h) 1 + O(h2-3m/2)}. 

Turning our attention to the relation between A(h) and a(h), we see that 

A(h) = {(X3 - X9)/(U(3) - uf(2)) - (X2 - X1)/(a(2) - u(l))}/(u(3)- u(l)) 

(3.26) = {(X3 - X2)/(U(3) - u(2)) - (X2 - X)/(u(2) - W()) 

.(1 + O(h2-3m/2))/(u(3) - u(l)) 

= a(h)(1 + O(h2-3m/2)). 

Using (3.25) and (3.26), we have, since a(h) converges to d2X(u*)/du2 # 0, 

(3.27) B(h)/A(h)- b(h)/a(h) = (b(h)/a(h))(1 + O(h2-3m-/2)) - b(h)/a(h) 

= (b(h)/a(h))O(h2-3m2). 

However, by (3.5) and (3.7), 

(3.28). b(h) = (X2 - X1)/(u(2) - u(1)) = O(hm/2). 

So, from (3.27), we have 

(3.29) B(h)/ A(h) - b(h)/a(h) = O(h2-m) 

which, with (3.23), proves the lemma. 
Proof of Lemma 3.4. The interpolation error in Ph(u) is 

(3.30) Xh(U) - Ph(u) = (d 3Xh()/du3)(u - uj(l))(u - a(2))(u - a(3))/3!. 

To estimate the size of this error at u = Vh, we observe from Lemmas 3.2, 3.3 that 
v(h) -u* = O(h3m/4), Vh - v(h) = O(h2-m) and from (3.6) and (3.11) that u(i) - 

u* = O(hm/2) and u(i) - u(i) = O(h2-m). Consequently, 

(3.31) au(i) - V(h) = O(hm/2), i = 1, 2, 3, 
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and, from (3.30), the interpolation error at u = V(h) is 0(h3m12). Now, if Vh 
Vh ? Izm/2 and Vn2 = VA- 0/2, 0(ht) = P(V') - P(Vh) # o(hm), since A(h) # 0 
for h sufficiently small. However, since the interpolation error at u = Vh is O(h3m/2), 
we will have 

(3.32) X( V:h) < ( V,), 

for h sufficiently small. Hence, u* must lie between V7 and V+ and Vh -U* = (hm/2). 
(Here, we use the assumption that X,(U) has one maximum at u*; otherwise, as men- 
tioned above, the result will be valid for some local maximum, call it u*, of X h(U).) 

Now, if u varies with h so that O(hm/2) = u - Vh (h3m/4), then P(Vh)- 

P(u) > 0(h/3 2). But 

P( Vh) XJ( VJ) = O(h3tn/2 

and 

P(u) - X,Xu) = 0(h ' ), 

so XA(u) < X,(Vh) for h sufficiently small. Consequently, u # u* and VI,- u*- 

O(h3m/4) as stated. It would appear that improved estimates could be obtained by this 
method by interpolating to higher degrees and assuming additional smoothness of 
the X(u), Xh(U) curves; however, the analysis becomes overly clumsy and the author 
believes an alternative mode of analysis should be sought to obtain such results. 

4. An Example. The preceding theoretical results were tested on the problem 

(4.1) -,Au(x) = Xe'(x) xC D, 

(4.2) u(x) 0, x E cD, 

for D taken to be the unit square. It has been conjectured that, for this problem, there 
is a X(u) curve with a single maximum. To the author's knowledge, however, there are 
no existence proofs for any solutions of this problem with X > 0, except when D is 
a circle, in consequence of the very strong convex nonlinearity. (See [6] and [7] for 
case of D a circle.) If, however, solutions exist, the arguments of Keller and Cohen, 
[13], show that the minimal positive solution is stable, and that other solutions are 
not stable. Recently, Joseph and Sparrow, [10], have given a simple analytic technique 
for estimating the X(u) curve, at least up to its first maximum. Discrete approximations 
to solutions of this problem (and other mildly nonlinear problems) have been com- 
puted by Rosen, [19], with error bounds, by nonlinear programming techniques. It 
appears that the bounding technique presented in this paper is restricted to stable 
solutions of (0.1), (0.2), as defined in Definition 1.2. 

In the discrete equations, for (4.1), (4.2), the distinction between stable and un- 
stable solutions of (4.1), (4.2) is reflected in the fact that the Jacobian matrix of the 
equations will be symmetric but not positive definite at discrete solutions correspond- 
ing to unstable continuous solutions. For such solutions, regular gradient-type itera- 
tive processes, such as nonlinear versions of SOR, cannot be expected to converge. 
On the other hand, Newton's method, implemented by solving directly a linear system 
at each step, is known to converge if the above-mentioned Jacobian matrix is simply 
nonsingular, [12]. This latter property holds, for h sufficiently small, at least, for dis- 
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crete solutions which correspond to isolated solutions of (4.1), (4.2). For this reason, 
the discrete equations were solved using Newton's method, solving at each step a 
linear system directly by a block tridiagonal scheme [8].ttt The discrete problem was 
posed (using symmetry assumptions) for a quarter of the square, and mesh sizes 
h = .1 and h = .05. The results were consistent to two or three decimals and are 
presented in Fig. 2 and Table 1, along with the bound from [10] for comparison. 

7.0 - 

I / 
4.0 -{ 

U 40 

FIGURE 2 

TABLE 1 

u Xh(U) bound for X(u) 

.078 1.0 1.43 

.269 3.0 4.06 

.555 5.0 6.29 

.796 6.0 7.10 

.867 6.2 7.20 
1.006 6.5 7.26 
1.072 6.6 7.26 
1.163 6.7 7.26 

2.161 6.1 
2.228 6.0 
2.846 5.0 
4.231 3.0 
6.982 1.0 

ttt The calculation was implemented by Mrs. M. Brown during the progress of her thesis on 
calculation of saddle points and the author gratefully acknowledges her work. 



374 R. B. SIMPSON 

The Jacobian matrix of the discrete system is the matrix for the discrete operator 
- Ah + Xfu(P, W(P)) of (1.7), (1.8), which is singular for X replaced by hi,h(W(P)). 

Since X - A h(uh(x; X)) tends to zero as X approaches X*, it would be anticipated that 
the discrete problem would be increasingly difficult to solve as X nears X*, and this 
was indeed the case. Moreover, if we let Uh(P; X) and Uh(P; X) denote the upper and 
lower solutions, respectively, the arguments of [13] indicate that Al, h(Uh(P; X)) < 

X < *h < A,U h(Uh(P; X)) so that, for a given X value near X*, the Jacobian matrix at 
the upper solution might be expected to be more singular than the Jacobian matrix 
at the lower solution. This also was encountered in the sense that, for X near X*, 
there are a number of X values for which initial guesses for Newton's method pro- 
ducing convergence to the lower solution were obtained but we were unable to produce 
convergence to the upper solution. 

The bound from [10] for this case is 

X(u) < 27r2ueu, u< 1< 

2 -1 >1 ?2we , u> 

and the results are consistent with Rosen's estimate of y* = 6.81 [19]. 
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